2019

Orlandini von Niessen AG, Poleganov MA, Rechner C, Plaschke A, Kranz LM, Fesser S, Diken M, Löwer M, Vallazza B, Beissert T, Bukur V, Kuhn AN, Türeci Ö, Sahin U. (2019) Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening. Mol Ther. 27:824-836.

DOI; PMID

Show abstract
  Synthetic mRNA has emerged as a powerful tool for the transfer of genetic information, and it is being explored for a variety of therapeutic applications. Many of these applications require prolonged intracellular persistence of mRNA to improve bioavailability of the encoded protein. mRNA molecules are intrinsically unstable and their intracellular kinetics depend on the UTRs embracing the coding sequence, in particular the 3′ UTR elements. We describe here a novel and generally applicable cell-based selection process for the identification of 3′ UTRs that augment the expression of proteins encoded by synthetic mRNA. Moreover, we show, for two applications of mRNA therapeutics, namely, (1) the delivery of vaccine antigens in order to mount T cell immune responses and (2) the introduction of reprogramming factors into differentiated cells in order to induce pluripotency, that mRNAs tagged with the 3′ UTR elements discovered in this study outperform those with commonly used 3′ UTRs. This approach further leverages the utility of mRNA as a gene therapy drug format. 

Vormehr M, Türeci Ö, Sahin U. (2019) Harnessing Tumor Mutations for Truly Individualized Cancer Vaccines. Annu Rev Med. 70:395-407.

DOI; PMID

Show abstract
  T cells are key effectors of anticancer immunity. They are capable of distinguishing tumor cells from normal ones by recognizing major histocompatibility complex-bound cancer-specific peptides. Accumulating evidence suggests that peptides associated with T cell-mediated tumor rejection arise predominantly from somatically mutated proteins and are unique to every patient’s tumor. Knowledge of an individual’s cancer mutanome (the entirety of cancer mutations) allows harnessing this enormous tumor cell-specific repertoire of highly immunogenic antigens for individualized cancer vaccines. This review outlines the preclinical and clinical state of individualized cancer vaccine development and the challenges ahead.